Sains Malaysiana 53(6)(2024): 1389-1403

http://doi.org/10.17576/jsm-2024-5306-13

 

Upcycling of Spent Copper Wires for Photocatalysis and Supercapacitor Applications

 (Kitar semula Wayar Tembaga Dibelanjakan untuk Aplikasi Fotokatalisis dan Superkapasitor)

 

CORNELIUS SATRIA YUDHA1,*, ENNI APRILIYANI2 & MEIDIANA ARINAWATI3

 

1Chemical Engineering Department, Vocational School, Sebelas Maret University, Jl. Colonel Sutarto 150K Surakarta, Indonesia, 57126

2Center of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Jl. Slamet Riyadi 435 Surakarta, Indonesia, 57146

 3Center of Excellence for Electrical Energy Storage Technology, Sebelas Maret University, Jl. Slamet Riyadi 435 Surakarta, Indonesia, 57146

 

Received: 15 November 2023/Accepted: 29 April 2024

 

AbstraCT

In this study, copper wires were upcycled as copper oxide (CuO) powder through hydrometallurgical and biotreatment processes, which are economically and environmentally attractive. Lactic acid, an organic weak acid, is chosen as the lixiviant to improve the sustainability of the leaching process; meanwhile, Camellia sinensis leaf extract is chosen for the biogenesis of CuO particles. The leaching behavior was investigated. A crystallized Cu powder was successfully generated during the biogenesis process, which became the precursor to CuO. The sintering of Cu resulted in high crystalline CuO particles with monoclinic structure (space group C2/c) based on several characterization methods such as X-ray diffraction analysis and Fourier transform Infrared spectroscopy. SEM images exhibited the submicron secondary particle with a raspberry-like shape of CuO and nanosized primary particles. The band gap of the as-prepared CuO is 3.17 eV. The as-prepared CuO particles were used as a photocatalyst and an active supercapacitor material. The photocatalytic performance was evaluated in a photodegradation process of acid orange 7 (AO7) and methyl orange (MO) dyes, which are considered harmful to the environment. The AO7 and MO photodegradation efficiency are 92.5 and 97.8, respectively. The electrochemical performance of CuO particles showed a pseudocapacitive behavior with a specific capacitance of 252 and 120 F/g at a current density of 0.5 and 5 A/g in 5 M of KOH electrolyte, respectively. This approach can be applied for numerous applications, specifically in overcoming heavy metal pollution from wide selections of metal-based wastes.

 

Keywords: Biogenesis; copper; leaching; photocatalyst; supercapacitor; waste

 

Abstrak

Dalam kajian ini, wayar kuprum dikitar semula sebagai serbuk kuprum oksida (CuO) melalui proses hidrometalurgi dan biorawatan yang lebih baik dari segi ekonomi dan alam sekitar. Asid laktik adalah asid lemah organik, dipilih sebagai bahan pengikat untuk meningkatkan kemampanan proses larut lesap; Sementara itu, ekstrak daun Camellia sinensis dipilih untuk biogenesis zarah CuO. Tingkah laku larut lesap telah dikaji. Serbuk Cu terhablur berjaya dihasilkan semasa proses biogenesis yang menjadi pendahulu kepada CuO. Pensinteran Cu menghasilkan zarah CuO berhablur tinggi dengan struktur monoklin (kumpulan ruang C2/c) berdasarkan beberapa kaedah pencirian seperti analisis pembelauan sinar-X dan spektroskopi Inframerah transformasi Fourier. Imej SEM menunjukkan zarah sekunder submikron dengan bentuk seperti raspberi CuO dan zarah primer bersaiz nano. Jurang jalur bagi CuO seperti yang disediakan ialah 3.17 eV. Zarah CuO yang disediakan telah digunakan sebagai pemangkin foto dan bahan aktif untuk superkapasitor. Prestasi fotokatalitik telah dinilai dalam proses fotodegradasi pewarna jingga asid 7 (AO7) dan metil jingga (MO), yang dianggap berbahaya kepada alam sekitar. Kecekapan fotodegradasi AO7 dan MO masing-masing ialah 92.5 dan 97.8. Prestasi elektrokimia zarah CuO menunjukkan tingkah laku pseudokapasitif dengan kapasitans tertentu 252 dan 120 F/g masing-masing pada ketumpatan arus 0.5 dan 5 A/g dalam 5 M elektrolit KOH. Pendekatan ini boleh digunakan untuk pelbagai aplikasi, khususnya dalam mengatasi pencemaran logam berat daripada pelbagai pilihan sisa berasaskan logam.

 

Kata kunci: Biogenesis; fotomangkin; kuprum; larut lesap; superkapasitor; sisa

 

references

Addanki, S., Amiri, I.S. & Yupapin, P. 2018. Review of optical fibers-introduction and applications in fiber lasers. Results in Physics 10: 743-750. https://doi.org/10.1016/j.rinp.2018.07.028

Bekru, A.G., Tufa, L.T., Zelekew, O.A., Goddati, M., Lee, J. & Sabir, F.K. 2022. Green synthesis of a CuO-ZnO nanocomposite for efficient photodegradation of methylene blue and reduction of 4-Nitrophenol. ACS Omega 7(35): 30908-30919. https://doi.org/10.1021/acsomega.2c02687

Betim, F.S., Marins, A.A.L., Coelho, E.L.D., Lelis, M.F.F. & Freitas, M.B.J.G. 2023. Evaluation of photocatalytic properties of zinc and cobalt mixed oxide recycled from spent Li-ion and Zn–MnO2 batteries in photo-fenton-like process. Materials Research Bulletin 162: 112179. https://doi.org/10.1016/j.materresbull.2023.112179

Gennero De Chialvo, M.R., Marchiano, S.L. & Arvía, A.J. 1984. The mechanism of oxidation of copper in alkaline solutions. Journal of Applied Electrochemistry 14(2): 165-175. https://doi.org/10.1007/BF00618735

Cuong, H.N., Pansambal, S., Ghotekar, S., Oza, R., Hai, N.T.T., Viet, N.M. & Nguyen, V.H. 2022. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environmental Research 203: 111858. https://doi.org/10.1016/j.envres.2021.111858

Dana, A. & Sheibani, S. 2021. CNTs-copper oxide nanocomposite photocatalyst with high visible light degradation efficiency. Advanced Powder Technology 32(10): 3760-3769. https://doi.org/10.1016/j.apt.2021.08.023

Dharshini Perumal, Che Azurahanim Che Abdullah, Emmellie Laura Albert & Ruzniza Mohd Zawawi. 2023. Green synthesis of silver nanoparticle decorated on reduced graphene oxide nanocomposite using Clinacanthus nutans and its applications. Sains Malaysiana 52(3): 953-966. https://doi.org/10.17576/jsm-2023-5203-19

Devanthiran Letchumanan, Sophia P.M. Sok, Suriani Ibrahim, Noor Hasima Nagoor & Norhafiza Mohd Arshad. 2021. Plant-based biosynthesis of Copper/Copper Oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11(4): 564. https://doi.org/10.3390/biom11040564

Dong, C., Xing, M. & Zhang, J. 2020. Recent progress of photocatalytic fenton-like process for environmental remediation. Frontiers in Environmental Chemistry 1: 1-21. https://doi.org/10.3389/fenvc.2020.00008

Dubal, D.P., Gund, G.S., Lokhande, C.D. & Holze, R. 2013. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Materials Research Bulletin 48(2): 923-928. https://doi.org/10.1016/j.materresbull.2012.11.081

Emima Jeronsia, J., Joseph, L.A., Vinosha, P.A., Mary, A.J. & Das, S.J. 2019. Camellia sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications. Materials Today: Proceedings 8: 214-222. https://doi.org/10.1016/j.matpr.2019.02.103

Ghidan, A.Y., Al-Antary, T.M. & Awwad, A.M. 2016. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach aphid. Environmental Nanotechnology, Monitoring and Management 6: 95-98. https://doi.org/10.1016/j.enmm.2016.08.002

Habbache, N., Alane, N., Djerad, S. & Tifouti, L. 2009. Leaching of copper oxide with different acid solutions. Chemical Engineering Journal 152(2-3): 503-508. https://doi.org/10.1016/j.cej.2009.05.020

Hendri Widiyandari, Orien Prilita, Muhammad Shalahuddin Al Ja’farawy, Fahru Nurosyid, Osi Arutanti, Yayuk Astuti & Nandang Mufti. 2023. Nitrogen-doped carbon quantum dots supported zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue photodegradation. Results in Engineering 17: 100814. https://doi.org/10.1016/j.rineng.2022.100814

Hojat Veisi, Bikash Karmakar, Taiebeh Tamoradi, Saba Hemmati, Malak Hekmati & Mona Hamelian. 2021. Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys lavandulifolia) flowers and evaluation of its catalytic activity. Scientific Reports 11: 1983. https://doi.org/10.1038/s41598-021-81320-6

Hyba, A.M., El Refay, H.M., Shahen, S. & Gaber, G.A. 2023. Comparison fabrication, identification and avoidance of corrosion potential of M-CuO NPs/S-CuO NPs to suppress corrosion on steel in an acidic solution. Chemical Papers 2023: 0123456789. https://doi.org/10.1007/s11696-023-02871-8

Jadhav, L.D., Patil, S.P., Chavan, A.U., Jamale, A.P. & Puri, V.R. 2011. Solution combustion synthesis of Cu nanoparticles: A role of oxidant-to-fuel ratio. Micro and Nano Letters 6(9): 812-815. https://doi.org/10.1049/mnl.2011.0372

Kayalvizhi, S., Sengottaiyan, A., Selvankumar, T., Senthilkumar, B., Sudhakar, C. & Selvam, K. 2020. Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance. Optik 202: 163507. https://doi.org/10.1016/j.ijleo.2019.163507

Lambert, F., Gaydardzhiev, S., Léonard, G., Lewis, G., Bareel, P.F. & Bastin, D. 2015. Copper leaching from waste electric cables by biohydrometallurgy. Minerals Engineering 76: 38-46. https://doi.org/10.1016/J.MINENG.2014.12.029

Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F. & Chen, R. 2018. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Management 71: 362-371. https://doi.org/10.1016/j.wasman.2017.10.028

Li, L., Lu, J., Ren, Y., Zhang, X.X., Chen, R.J., Wu, F. & Amine, K. 2012. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources 218: 21-27. https://doi.org/10.1016/j.jpowsour.2012.06.068

Lingaraju, K., Raja Naika, H., Manjunath, K., Nagaraju, G., Suresh, D. & Nagabhushana, H. 2015. Rauvolfia serpentina-mediated green synthesis of CuO nanoparticles and its multidisciplinary studies. Acta Metallurgica Sinica (English Letters) 28(9): 1134-1140. https://doi.org/10.1007/s40195-015-0304-y

Lisińska, M., Gajda, B., Saternus, M., Brozová, S., Wojtal, T. & Rzelewska-Piekut, M. 2022. The effect of organic acids as leaching agents for hydrometallurgical recovery of metals from PCBs. Metalurgija 61(3-4): 609-612.

Liu, Q., Deng, W., Wang, Q., Lin, X., Gong, L., Liu, C., Xiong, W. & Nie, X. 2020. An efficient chemical precipitation route to fabricate 3D flower-like CuO and 2D leaf-like CuO for degradation of methylene blue. Advanced Powder Technology 31(4): 1391-1401. https://doi.org/10.1016/j.apt.2020.01.003

Manjari, G., Saran, S., Arun, T., Vijaya Bhaskara Rao, A. & Devipriya, S.P. 2017. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society 21(5): 610-618. https://doi.org/10.1016/j.jscs.2017.02.004

Meghana Navada, K., Nagaraja, G.K., D’Souza, J.N., Kouser, S., Ranjitha, R. & Manasa, D.J. 2020. Phyto assisted synthesis and characterization of Scoparia dulsis L. leaf extract mediated porous nano CuO photocatalysts and its anticancer behavior. Applied Nanoscience (Switzerland) 10(11): 4221-4240. https://doi.org/10.1007/s13204-020-01536-2

Muhammad Aadil, Abdur Rahman, Sonia Zulfiqar, Ibrahim A. Alsafari, Muhammad Shahid, Imran Shakir, Philips O. Agboola, Sajjad Haider & Muhammad Farooq Warsi. 2021. Facile synthesis of binary metal substituted copper oxide as a solar light driven photocatalyst and antibacterial substitute. Advanced Powder Technology 32(3): 940-950. https://doi.org/10.1016/j.apt.2021.01.040

Nagaraj, E., Karuppannan, K., Shanmugam, P. & Venugopal, S. 2019. Exploration of bio-synthesized copper oxide nanoparticles using Pterolobium hexapetalum leaf extract by photocatalytic activity and biological evaluations. Journal of Cluster Science 30(4): 1157-1168. https://doi.org/10.1007/s10876-019-01579-8

Nagarajan, N. & Panchatcharam, P. 2023. Cost-effective and eco-friendly copper recovery from waste printed circuit boards using organic chemical leaching. Heliyon 9(3): e13806. https://doi.org/10.1016/j.heliyon.2023.e13806

Nisha, B., Vidyalakshmi, Y. & Sirajunnisa Abdul Razack. 2020. Enhanced formation of ruthenium oxide nanoparticles through green synthesis for highly efficient supercapacitor applications. Advanced Powder Technology 31(3): 1001-1006. https://doi.org/10.1016/j.apt.2019.12.026

Nwanya, A.C., Ndipingwi, M.M., Mayedwaa, N., Razanamahandry, L.C., Ikpo, C.O., Waryo, T., Ntwampe, S.K.O., Malenga, E., Fosso-Kankeu, E., Ezema, F.I., Iwuoha, E.I. & Maaza, M. 2019. Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochimica Acta 301: 436-448. https://doi.org/10.1016/j.electacta.2019.01.186

Pakzad, K., Alinezhad, H. & Nasrollahzadeh, M. 2019. Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceramics International 45(14): 17173-17182. https://doi.org/10.1016/j.ceramint.2019.05.272

Patil, A.S., Patil, M.D., Lohar, G.M., Jadhav, S.T. & Fulari, V.J. 2017. Supercapacitive properties of CuO thin films using modified SILAR method. Ionics 23(5): 1259-1266. https://doi.org/10.1007/s11581-016-1921-9

Qaderi, J., Mamat, C.R. & Abdul Jalil, A. 2021. “Preparation and Characterization of Copper, Iron, and Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene Blue.” Sains Malaysiana 50 (1): 135–49. https://doi.org/10.17576/jsm-2021-5001-14.

Raub, Aini Ayunni Mohd, Jumril Yunas, Mohd Ambri Mohamed, Jamal Kazmi, Jaenudin Ridwan, and Azrul Azlan Hamzah. 2022. “Statistical Optimization of Zinc Oxide Nanorod Synthesis for Photocatalytic Degradation of Methylene Blue.” Sains Malaysiana 51 (6): 1933–44. https://doi.org/10.17576/jsm-2022-5106-28.

Rostami-Vartooni, Akbar. 2017. “Green Synthesis of CuO Nanoparticles Loaded on the Seashell Surface Using Rumex Crispus Seeds Extract and Its Catalytic Applications for Reduction of Dyes.” IET Nanobiotechnology 11 (4): 349–59. https://doi.org/10.1049/iet-nbt.2016.0149.

Saquf Jillani, Mohsan Jelani, Najam Ul Hassan, Shahbaz Ahmad & Muhammad Hafeez. 2018. Synthesis, characterization and biological studies of copper oxide nanostructures. Materials Research Express 5(4). https://doi.org/10.1088/2053-1591/aab864

Saravanakumar, Balakrishnan, Chandran Radhakrishnan, Murugan Ramasamy, Rajendran Kaliaperumal, Allen J. Britten, and Martin Mkandawire. 2019. “Surfactant Determines the Morphology, Structure and Energy Storage Features of CuO Nanostructures.” Results in Physics 13 (March): 102185. https://doi.org/10.1016/j.rinp.2019.102185.

Seong, Won Mo & Manthiram, A. 2020. “Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO2Cathode for Lithium-Ion Batteries.” ACS Applied Materials and Interfaces 12 (39): 43653–64. https://doi.org/10.1021/acsami.0c11413.

Shah, Rosmahani Mohd, Rozan Mohamad Yunus, Mohd Shahbudin Masdar Mastar, Lorna Jefferey Minggu, Wai Yin Wong, and Abdul Amir H. Kadhum. 2019. “Synthesis of Graphene/Cu2O Thin Film Photoelectrode via Facile Hydrothermal Method for Photoelectrochemical Measurement.” Sains Malaysiana 48 (6): 1233–38. https://doi.org/10.17576/jsm-2019-4806-10.

Shanmugam Prakash, Nagaraj Elavarasan, Alagesan Venkatesan, Kasivisvanathan Subashini, Murugesan Sowndharya & Venugopal Sujatha. 2018. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Advanced Powder Technology 29(12): 3315-3326. https://doi.org/10.1016/j.apt.2018.09.009

Soraya Ulfa Muzayanha, Cornelius Satria Yudha, Adrian Nur, Hendri Widiyandari, Hery Haerudin, Hanida Nilasary, Ferry Fathoni & Agus Purwanto. 2019. A fast metals recovery method for the synthesis of lithium nickel cobalt aluminum oxide material from cathode waste. Metals 9(5): 615. https://doi.org/10.3390/met9050615

Tanna, J.A., Chaudhary, R.G., Gandhare, N.V., Rai, A.R., Yerpude, S. & Juneja, H.D. 2016. Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. Journal of Experimental Nanoscience 11(11): 884-900. https://doi.org/10.1080/17458080.2016.1177216

Varughese, A., Kaur, R. & Singh, P. 2020. Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract. IOP Conference Series: Materials Science and Engineering 961: 012011. https://doi.org/10.1088/1757-899X/961/1/012011

Zhuang, L., Sun, C., Zhou, T., Li, H. & Dai, A. 2019. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Management 85: 175-185. https://doi.org/10.1016/j.wasman.2018.12.034

 

 *Corresponding author; email: corneliussyudha@staff.uns.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next