Sains Malaysiana 53(6)(2024): 1389-1403
http://doi.org/10.17576/jsm-2024-5306-13
Upcycling of Spent Copper
Wires for Photocatalysis and Supercapacitor Applications
(Kitar semula Wayar Tembaga Dibelanjakan untuk Aplikasi
Fotokatalisis dan Superkapasitor)
CORNELIUS SATRIA YUDHA1,*, ENNI APRILIYANI2 & MEIDIANA ARINAWATI3
1Chemical Engineering
Department, Vocational School, Sebelas Maret University, Jl. Colonel Sutarto
150K Surakarta, Indonesia, 57126
2Center
of Excellence for Electrical Energy Storage Technology, Sebelas Maret
University, Jl. Slamet Riyadi 435 Surakarta, Indonesia, 57146
3Center of Excellence for
Electrical Energy Storage Technology, Sebelas Maret University, Jl. Slamet
Riyadi 435 Surakarta, Indonesia, 57146
Received: 15 November 2023/Accepted:
29 April 2024
AbstraCT
In this study,
copper wires were upcycled as copper oxide (CuO) powder through
hydrometallurgical and biotreatment processes, which are economically and
environmentally attractive. Lactic acid, an organic weak acid, is chosen as the
lixiviant to improve the sustainability of the leaching process; meanwhile, Camellia sinensis leaf extract is chosen
for the biogenesis of CuO particles. The leaching behavior was investigated. A
crystallized Cu powder was successfully generated during the biogenesis
process, which became the precursor to CuO. The sintering of Cu resulted in
high crystalline CuO particles with monoclinic structure (space group C2/c)
based on several characterization methods such as X-ray diffraction analysis
and Fourier transform Infrared spectroscopy. SEM images exhibited the submicron
secondary particle with a raspberry-like shape of CuO and nanosized primary
particles. The band gap of the as-prepared CuO is 3.17 eV. The as-prepared CuO
particles were used as a photocatalyst and an active supercapacitor material.
The photocatalytic performance was evaluated in a photodegradation process of
acid orange 7 (AO7) and methyl orange (MO) dyes, which are considered harmful
to the environment. The AO7 and MO photodegradation efficiency are 92.5 and
97.8, respectively. The electrochemical performance of CuO particles showed a
pseudocapacitive behavior with a specific capacitance of 252 and 120 F/g at a
current density of 0.5 and 5 A/g in 5 M of KOH electrolyte, respectively. This
approach can be applied for numerous applications, specifically in overcoming
heavy metal pollution from wide selections of metal-based wastes.
Keywords: Biogenesis; copper; leaching; photocatalyst;
supercapacitor; waste
Abstrak
Dalam kajian ini,
wayar kuprum dikitar semula sebagai serbuk kuprum oksida (CuO) melalui proses
hidrometalurgi dan biorawatan yang lebih baik dari segi ekonomi dan alam
sekitar. Asid laktik adalah asid lemah organik, dipilih sebagai bahan pengikat
untuk meningkatkan kemampanan proses larut lesap; Sementara itu, ekstrak daun Camellia sinensis dipilih untuk
biogenesis zarah CuO. Tingkah laku larut lesap telah dikaji. Serbuk Cu
terhablur berjaya dihasilkan semasa proses biogenesis yang menjadi pendahulu
kepada CuO. Pensinteran Cu menghasilkan zarah CuO berhablur tinggi dengan
struktur monoklin (kumpulan ruang C2/c) berdasarkan beberapa kaedah pencirian
seperti analisis pembelauan sinar-X dan spektroskopi Inframerah transformasi
Fourier. Imej SEM menunjukkan zarah sekunder submikron dengan bentuk seperti
raspberi CuO dan zarah primer bersaiz nano. Jurang jalur bagi CuO seperti yang
disediakan ialah 3.17 eV. Zarah CuO yang disediakan telah digunakan sebagai
pemangkin foto dan bahan aktif untuk superkapasitor. Prestasi fotokatalitik
telah dinilai dalam proses fotodegradasi pewarna jingga asid 7 (AO7) dan metil
jingga (MO), yang dianggap berbahaya kepada alam sekitar. Kecekapan
fotodegradasi AO7 dan MO masing-masing ialah 92.5 dan 97.8. Prestasi
elektrokimia zarah CuO menunjukkan tingkah laku pseudokapasitif dengan
kapasitans tertentu 252 dan 120 F/g masing-masing pada ketumpatan arus 0.5 dan
5 A/g dalam 5 M elektrolit KOH. Pendekatan ini boleh digunakan untuk pelbagai
aplikasi, khususnya dalam mengatasi pencemaran logam berat daripada pelbagai
pilihan sisa berasaskan logam.
Kata kunci: Biogenesis; fotomangkin; kuprum; larut
lesap; superkapasitor; sisa
references
Addanki, S., Amiri, I.S.
& Yupapin, P. 2018. Review of optical fibers-introduction and applications
in fiber lasers. Results in Physics 10: 743-750. https://doi.org/10.1016/j.rinp.2018.07.028
Bekru, A.G., Tufa, L.T.,
Zelekew, O.A., Goddati, M., Lee, J. & Sabir, F.K. 2022. Green synthesis of
a CuO-ZnO nanocomposite for efficient photodegradation of methylene blue and
reduction of 4-Nitrophenol. ACS Omega 7(35): 30908-30919. https://doi.org/10.1021/acsomega.2c02687
Betim, F.S., Marins, A.A.L.,
Coelho, E.L.D., Lelis, M.F.F. & Freitas, M.B.J.G. 2023. Evaluation of
photocatalytic properties of zinc and cobalt mixed oxide recycled from spent
Li-ion and Zn–MnO2 batteries in photo-fenton-like process. Materials Research Bulletin 162: 112179.
https://doi.org/10.1016/j.materresbull.2023.112179
Gennero De Chialvo, M.R.,
Marchiano, S.L. & Arvía, A.J. 1984. The mechanism of oxidation of copper in
alkaline solutions. Journal of Applied
Electrochemistry 14(2): 165-175. https://doi.org/10.1007/BF00618735
Cuong, H.N., Pansambal, S.,
Ghotekar, S., Oza, R., Hai, N.T.T., Viet, N.M. & Nguyen, V.H. 2022. New
frontiers in the plant extract mediated biosynthesis of copper oxide (CuO)
nanoparticles and their potential applications: A review. Environmental Research 203: 111858. https://doi.org/10.1016/j.envres.2021.111858
Dana, A. & Sheibani, S.
2021. CNTs-copper oxide nanocomposite photocatalyst with high visible light
degradation efficiency. Advanced Powder
Technology 32(10): 3760-3769. https://doi.org/10.1016/j.apt.2021.08.023
Dharshini Perumal, Che
Azurahanim Che Abdullah, Emmellie Laura Albert & Ruzniza Mohd Zawawi. 2023.
Green synthesis of silver nanoparticle decorated on reduced graphene oxide
nanocomposite using Clinacanthus nutans and its applications. Sains Malaysiana 52(3): 953-966. https://doi.org/10.17576/jsm-2023-5203-19
Devanthiran Letchumanan,
Sophia P.M. Sok, Suriani Ibrahim, Noor Hasima Nagoor & Norhafiza Mohd
Arshad. 2021. Plant-based biosynthesis of Copper/Copper Oxide nanoparticles: An
update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 11(4): 564.
https://doi.org/10.3390/biom11040564
Dong, C., Xing, M. &
Zhang, J. 2020. Recent progress of photocatalytic fenton-like process for
environmental remediation. Frontiers in
Environmental Chemistry 1: 1-21. https://doi.org/10.3389/fenvc.2020.00008
Dubal, D.P., Gund, G.S.,
Lokhande, C.D. & Holze, R. 2013. CuO cauliflowers for supercapacitor
application: Novel potentiodynamic deposition. Materials Research Bulletin 48(2): 923-928.
https://doi.org/10.1016/j.materresbull.2012.11.081
Emima Jeronsia, J., Joseph,
L.A., Vinosha, P.A., Mary, A.J. & Das, S.J. 2019. Camellia sinensis leaf extract mediated synthesis of copper oxide
nanostructures for potential biomedical applications. Materials Today: Proceedings 8: 214-222.
https://doi.org/10.1016/j.matpr.2019.02.103
Ghidan, A.Y., Al-Antary, T.M.
& Awwad, A.M. 2016. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on
green peach aphid. Environmental
Nanotechnology, Monitoring and Management 6: 95-98.
https://doi.org/10.1016/j.enmm.2016.08.002
Habbache, N., Alane, N.,
Djerad, S. & Tifouti, L. 2009. Leaching of copper oxide with different acid
solutions. Chemical Engineering Journal 152(2-3): 503-508. https://doi.org/10.1016/j.cej.2009.05.020
Hendri Widiyandari, Orien
Prilita, Muhammad Shalahuddin Al Ja’farawy, Fahru Nurosyid, Osi Arutanti, Yayuk
Astuti & Nandang Mufti. 2023. Nitrogen-doped carbon quantum dots supported
zinc oxide (ZnO/N-CQD) nanoflower photocatalyst for methylene blue
photodegradation. Results in Engineering 17: 100814. https://doi.org/10.1016/j.rineng.2022.100814
Hojat Veisi, Bikash Karmakar,
Taiebeh Tamoradi, Saba Hemmati, Malak Hekmati & Mona Hamelian. 2021.
Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys lavandulifolia) flowers and
evaluation of its catalytic activity. Scientific
Reports 11: 1983. https://doi.org/10.1038/s41598-021-81320-6
Hyba, A.M., El Refay, H.M.,
Shahen, S. & Gaber, G.A. 2023. Comparison fabrication, identification and
avoidance of corrosion potential of M-CuO NPs/S-CuO NPs to suppress corrosion
on steel in an acidic solution. Chemical
Papers 2023: 0123456789. https://doi.org/10.1007/s11696-023-02871-8
Jadhav, L.D., Patil, S.P.,
Chavan, A.U., Jamale, A.P. & Puri, V.R. 2011. Solution combustion synthesis
of Cu nanoparticles: A role of oxidant-to-fuel ratio. Micro and Nano Letters 6(9): 812-815.
https://doi.org/10.1049/mnl.2011.0372
Kayalvizhi, S., Sengottaiyan,
A., Selvankumar, T., Senthilkumar, B., Sudhakar, C. & Selvam, K. 2020.
Eco-friendly cost-effective approach for synthesis of copper oxide
nanoparticles for enhanced photocatalytic performance. Optik 202: 163507. https://doi.org/10.1016/j.ijleo.2019.163507
Lambert, F., Gaydardzhiev,
S., Léonard, G., Lewis, G., Bareel, P.F. & Bastin, D. 2015. Copper leaching
from waste electric cables by biohydrometallurgy. Minerals Engineering 76: 38-46.
https://doi.org/10.1016/J.MINENG.2014.12.029
Li, L., Bian, Y., Zhang, X.,
Guan, Y., Fan, E., Wu, F. & Chen, R. 2018. Process for recycling
mixed-cathode materials from spent lithium-ion batteries and kinetics of
leaching. Waste Management 71:
362-371. https://doi.org/10.1016/j.wasman.2017.10.028
Li, L., Lu, J., Ren, Y.,
Zhang, X.X., Chen, R.J., Wu, F. & Amine, K. 2012. Ascorbic-acid-assisted
recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources 218: 21-27.
https://doi.org/10.1016/j.jpowsour.2012.06.068
Lingaraju, K., Raja Naika,
H., Manjunath, K., Nagaraju, G., Suresh, D. & Nagabhushana, H. 2015.
Rauvolfia serpentina-mediated green synthesis of CuO nanoparticles and its
multidisciplinary studies. Acta
Metallurgica Sinica (English Letters) 28(9): 1134-1140.
https://doi.org/10.1007/s40195-015-0304-y
Lisińska, M., Gajda, B.,
Saternus, M., Brozová, S., Wojtal, T. & Rzelewska-Piekut, M. 2022. The
effect of organic acids as leaching agents for hydrometallurgical recovery of
metals from PCBs. Metalurgija 61(3-4): 609-612.
Liu, Q., Deng, W., Wang, Q.,
Lin, X., Gong, L., Liu, C., Xiong, W. & Nie, X. 2020. An efficient chemical
precipitation route to fabricate 3D flower-like CuO and 2D leaf-like CuO for
degradation of methylene blue. Advanced
Powder Technology 31(4): 1391-1401.
https://doi.org/10.1016/j.apt.2020.01.003
Manjari, G., Saran, S., Arun,
T., Vijaya Bhaskara Rao, A. & Devipriya, S.P. 2017. Catalytic and
recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. Journal of Saudi Chemical Society 21(5):
610-618. https://doi.org/10.1016/j.jscs.2017.02.004
Meghana Navada, K., Nagaraja,
G.K., D’Souza, J.N., Kouser, S., Ranjitha, R. & Manasa, D.J. 2020. Phyto
assisted synthesis and characterization of Scoparia
dulsis L. leaf extract mediated porous nano CuO photocatalysts and its
anticancer behavior. Applied Nanoscience
(Switzerland) 10(11): 4221-4240. https://doi.org/10.1007/s13204-020-01536-2
Muhammad Aadil, Abdur Rahman,
Sonia Zulfiqar, Ibrahim A. Alsafari, Muhammad Shahid, Imran Shakir, Philips O.
Agboola, Sajjad Haider & Muhammad Farooq Warsi. 2021. Facile synthesis of
binary metal substituted copper oxide as a solar light driven photocatalyst and
antibacterial substitute. Advanced Powder
Technology 32(3): 940-950. https://doi.org/10.1016/j.apt.2021.01.040
Nagaraj, E., Karuppannan, K.,
Shanmugam, P. & Venugopal, S. 2019. Exploration of bio-synthesized copper
oxide nanoparticles using Pterolobium
hexapetalum leaf extract by photocatalytic activity and biological
evaluations. Journal of Cluster Science 30(4): 1157-1168. https://doi.org/10.1007/s10876-019-01579-8
Nagarajan, N. &
Panchatcharam, P. 2023. Cost-effective and eco-friendly copper recovery from
waste printed circuit boards using organic chemical leaching. Heliyon 9(3): e13806.
https://doi.org/10.1016/j.heliyon.2023.e13806
Nisha, B., Vidyalakshmi, Y.
& Sirajunnisa Abdul Razack. 2020. Enhanced formation of ruthenium oxide
nanoparticles through green synthesis for highly efficient supercapacitor
applications. Advanced Powder Technology 31(3): 1001-1006. https://doi.org/10.1016/j.apt.2019.12.026
Nwanya, A.C., Ndipingwi,
M.M., Mayedwaa, N., Razanamahandry, L.C., Ikpo, C.O., Waryo, T., Ntwampe,
S.K.O., Malenga, E., Fosso-Kankeu, E., Ezema, F.I., Iwuoha, E.I. & Maaza,
M. 2019. Maize (Zea mays L.) fresh
husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive
energy storage. Electrochimica Acta 301: 436-448. https://doi.org/10.1016/j.electacta.2019.01.186
Pakzad, K., Alinezhad, H.
& Nasrollahzadeh, M. 2019. Green synthesis of Ni@Fe3O4 and CuO
nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under
UV-irradiation. Ceramics International 45(14): 17173-17182. https://doi.org/10.1016/j.ceramint.2019.05.272
Patil, A.S., Patil, M.D.,
Lohar, G.M., Jadhav, S.T. & Fulari, V.J. 2017. Supercapacitive properties
of CuO thin films using modified SILAR method. Ionics 23(5): 1259-1266. https://doi.org/10.1007/s11581-016-1921-9
Qaderi, J., Mamat, C.R. &
Abdul Jalil, A. 2021. “Preparation and Characterization of Copper, Iron, and
Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene
Blue.” Sains Malaysiana 50 (1):
135–49. https://doi.org/10.17576/jsm-2021-5001-14.
Raub, Aini Ayunni Mohd,
Jumril Yunas, Mohd Ambri Mohamed, Jamal Kazmi, Jaenudin Ridwan, and Azrul Azlan
Hamzah. 2022. “Statistical Optimization of Zinc Oxide Nanorod Synthesis for
Photocatalytic Degradation of Methylene Blue.” Sains Malaysiana 51 (6): 1933–44.
https://doi.org/10.17576/jsm-2022-5106-28.
Rostami-Vartooni, Akbar.
2017. “Green Synthesis of CuO Nanoparticles Loaded on the Seashell Surface
Using Rumex Crispus Seeds Extract and Its Catalytic Applications for Reduction
of Dyes.” IET Nanobiotechnology 11
(4): 349–59. https://doi.org/10.1049/iet-nbt.2016.0149.
Saquf Jillani, Mohsan Jelani,
Najam Ul Hassan, Shahbaz Ahmad & Muhammad Hafeez. 2018. Synthesis,
characterization and biological studies of copper oxide nanostructures. Materials Research Express 5(4).
https://doi.org/10.1088/2053-1591/aab864
Saravanakumar, Balakrishnan,
Chandran Radhakrishnan, Murugan Ramasamy, Rajendran Kaliaperumal, Allen J.
Britten, and Martin Mkandawire. 2019. “Surfactant Determines the Morphology,
Structure and Energy Storage Features of CuO Nanostructures.” Results in Physics 13 (March): 102185.
https://doi.org/10.1016/j.rinp.2019.102185.
Seong, Won Mo &
Manthiram, A. 2020. “Complementary Effects of Mg and Cu Incorporation in
Stabilizing the Cobalt-Free LiNiO2Cathode for Lithium-Ion
Batteries.” ACS Applied Materials and
Interfaces 12 (39): 43653–64. https://doi.org/10.1021/acsami.0c11413.
Shah, Rosmahani Mohd, Rozan
Mohamad Yunus, Mohd Shahbudin Masdar Mastar, Lorna Jefferey Minggu, Wai Yin
Wong, and Abdul Amir H. Kadhum. 2019. “Synthesis of Graphene/Cu2O Thin Film
Photoelectrode via Facile Hydrothermal Method for Photoelectrochemical
Measurement.” Sains Malaysiana 48
(6): 1233–38. https://doi.org/10.17576/jsm-2019-4806-10.
Shanmugam Prakash, Nagaraj
Elavarasan, Alagesan Venkatesan, Kasivisvanathan Subashini, Murugesan
Sowndharya & Venugopal Sujatha. 2018. Green synthesis of copper oxide
nanoparticles and its effective applications in Biginelli reaction, BTB
photodegradation and antibacterial activity. Advanced Powder Technology 29(12): 3315-3326.
https://doi.org/10.1016/j.apt.2018.09.009
Soraya Ulfa Muzayanha,
Cornelius Satria Yudha, Adrian Nur, Hendri Widiyandari, Hery Haerudin, Hanida
Nilasary, Ferry Fathoni & Agus Purwanto. 2019. A fast metals recovery
method for the synthesis of lithium nickel cobalt aluminum oxide material from
cathode waste. Metals 9(5): 615.
https://doi.org/10.3390/met9050615
Tanna, J.A., Chaudhary, R.G.,
Gandhare, N.V., Rai, A.R., Yerpude, S. & Juneja, H.D. 2016. Copper
nanoparticles catalysed an efficient one-pot multicomponents synthesis of
chromenes derivatives and its antibacterial activity. Journal of Experimental Nanoscience 11(11): 884-900.
https://doi.org/10.1080/17458080.2016.1177216
Varughese, A., Kaur, R. &
Singh, P. 2020. Green synthesis and characterization of copper oxide
nanoparticles using Psidium guajava leaf extract. IOP Conference Series:
Materials Science and Engineering 961: 012011.
https://doi.org/10.1088/1757-899X/961/1/012011
Zhuang, L., Sun, C., Zhou,
T., Li, H. & Dai, A. 2019. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Management 85: 175-185.
https://doi.org/10.1016/j.wasman.2018.12.034
*Corresponding
author; email: corneliussyudha@staff.uns.ac.id
|